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Abstract

An analytical method is developed for the vibration analysis of rectangular plates with elastically restrained edges. The

displacement solution is expressed as a two-dimensional Fourier series supplemented with several one-dimensional Fourier

series. Mathematically, such a series expansion is capable of representing any function (including the exact displacement

solution) whose third-order partial derivatives are (required to be) continuous over the area of the plate. Since the

discontinuities (or jumps) potentially related to the partial derivatives at the edges (when they are periodically extended

onto the entire x–y plane as implied by a two-dimensional Fourier series expansion) have been explicitly ‘‘absorbed’’ by the

supplementary terms, all the series expansions for up to the fourth-order derivatives can be directly obtained through term-

by-term differentiations of the displacement series. Thus, an exact solution can be obtained by letting the series

simultaneously satisfy the governing differential equation and the boundary conditions on a point-wise basis. Because the

series solution has to be truncated numerically, the ‘‘exact solution’’ should be understood as a solution with arbitrary

precision. Several numerical examples are presented to illustrate the excellent accuracy of the current solution. The

proposed method can be directly extended to other more complicated boundary conditions involving non-uniform elastic

restraints, point supports, partial supports, and their combinations.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Transverse vibrations of rectangular plates with various boundary conditions have been extensively studied
in the literature, as comprehensively reviewed by Leissa [1]. While exact solutions are available for plates that
are simply supported along at least one pair of opposite edges, it has been widely accepted that there exists no
exact solution for other more general boundary conditions. Accordingly, a variety of approximate or
numerical solution techniques have been employed to solve plate problems under different boundary
conditions. Rayleigh–Ritz method is one of the most widely used techniques for obtaining an approximate
solution. When the Rayleigh–Ritz method is employed in solving plate problems, the displacement function is
often expressed in terms of characteristic functions obtained for beams with similar boundary conditions [2–6].
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

a plate dimension in x-direction
b plate dimension in y-direction
h plate thickness
r mass density
E Young’s modulus
v Poisson’s ratio
D flexural rigidity ( ¼ Eh3/(12(1�v2)))
w(x, y) flexural displacement
M,N Fourier series truncation number in,

respectively, x- and y-directions
m Fourier series index in x-direction

( ¼ 0, 1,y,M�1)
n Fourier series index in y-direction

( ¼ 0, 1,y,N�1)
p rearrange index number ( ¼ nM+m)
l index in the special functions and single

Fourier series ( ¼ 1, 2, 3, 4)
r aspect ratio ( ¼ a/b)
dmn Kronecker delta function

lam mp/a
lbn np/a
O dimensionless frequency parameter

(¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
)

o angular frequency
K stiffness matrix
M mass matrix
Amn double Fourier series coefficients
cl

m; d
l
n single Fourier series coefficients

kx0, kxa translational stiffnesses at, respectively,
x ¼ 0 and x ¼ a

ky0, kyb translational stiffnesses at, respectively,
y ¼ 0 and y ¼ b

Kx0, Kxa rotational stiffnesses at, respectively,
x ¼ 0 and x ¼ a

Ky0, Kybrotational stiffnesses at, respectively,
y ¼ 0 and y ¼ b

Mx, My bending moment
Mxy twisting moment
Qx, Qy shear forces
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Although the characteristic functions are well known in the form of trigonometric and hyperbolic functions,
they are explicitly dependent on the boundary conditions. Consequently, a specific set of characteristic
functions for each type of boundary conditions is required. However, even considering only the four simplest
homogeneous cases (i.e., simply supported, clamped, free, and guided), one realizes that they can be combined
into 55 different types of boundary conditions for a rectangular plate. Thus, the use of beam functions will
lead to at least a very tedious solution process, not to mention potential difficulties associated with numerical
instability of higher-order characteristic functions. These issues and concerns will become more remarkable
for plates with elastically restrained edges.

Instead of the beam functions, one can also use other forms of admissible functions such as simple or
orthogonal polynomials, trigonometric functions, and their combinations [7–16]. When the admissible
functions do not form a complete set, the accuracy and convergence of the corresponding solution cannot be
easily estimated. A well-known problem with use of complete (orthogonal) polynomials is that the higher-
order polynomials tend to become numerically unstable due to the computer round-off errors. This numerical
difficulty can be avoided by using trigonometric functions [11–13] or combinations of trigonometric functions
and lower-order polynomials [14–16]. Although it has become a ‘‘standard’’ practice to express the plate
displacement function as a series expansion of beam functions, there is no guarantee mathematically that such
a representation will actually converge to the true solution because of the difference between the beam and
plate boundary conditions. While the mathematical consequence of such a treatment is not readily assessed, its
practical implication becomes immediately clear when a non-uniform boundary condition is specified along an
edge; i.e., a similar boundary condition cannot be readily defined for determining the appropriate beam
functions.

A systematic superposition method has been proposed by Gorman [17–20] for solving plate problems under
various boundary conditions. In the superposition method a general boundary condition is decomposed into a
number of ‘‘simple’’ boundary conditions for which analytical solutions exist or can be easily derived. In
essence, the solutions obtained by the superposition method are exact since the governing differential equation
is exactly satisfied throughout the entire domain of the plate. This technique, however, requires a good
understanding and skillful decomposition of the original problems. In addition, the solution process
essentially needs to be customized for each kind of boundary conditions, which may not be a small challenge
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in view of the variety of possible boundary conditions encountered in practice. Hurlebaus et al. [21] proposed a
Fourier cosine series solution for calculating the eigenfrequencies and mode shapes for a (composite) plate
with completely free edges. The exactness of this solution was questioned by Rosales and Filipich [22]. In
particular, they insisted that when uniform convergence of the essential functions (which include the slopes in
the plate problem) could not be ensured, there was the probability that eigenvalues would converge to an
approximate value, or even worse, jump to different eigenvalues (i.e., the loss of eigenvalues). In an earlier
paper [23], they developed a variational method, the so-called whole-element method (WEM), to calculate the
natural frequencies of a free rectangular plate. The displacement solution was expressed in the form of sine
series plus a few complementary terms, and the solution was obtained as an extremizing sequence
corresponding to the stationarity condition for a functional defined over the domain of the plate. Probably
because of the free boundary condition specified along each edge, the functional they used did not contain any
boundary variable or involve any boundary integral. Mathematical proofs were presented in their paper
regarding the exactness of eigenvalues and uniform convergence of essential functions.

It is not clear whether or not the series solutions derived in Refs. [21,23] can be extended to boundary
conditions than the completely free case. Although these series solutions were claimed to be able to exactly
calculate eigenfrequencies, mode shapes, and even slopes, they may not automatically become an exact
solution in the classical sense because a classical solution will have to be sufficiently smooth; i.e., the third-
order derivatives will have to be continuous, and the fourth-order derivatives will have to exist everywhere on
the plate. For example, if the moments and shear forces cannot be assured to be exact throughout the plate
and along the edges (when they are not completely free), it may not be possible to ascertain that
eigenfrequencies and mode shapes can be calculated exactly or with an arbitrary precision. These questions or
concerns can all be circumvented by the proposed solution, which is also expressed in the form of series
expansions. It is, however, substantially different from the aforementioned series solutions in that it can be
differentiated term-by-term to obtain other useful quantities (such as, slopes, moments, and shear forces) at
any point on the plate, and hence it can be directly substituted in the governing equation and boundary
conditions to solve for unknown expansion coefficients in an exact manner. This work represents an extension
of the solution method previously developed for analyzing vibrations of beams [24], and in-plane vibrations of
plates [25]. In comparison with the solutions for in-plane vibrations, the current one will have to include more
supplementary terms to improve smoothness (and hence rate of convergence) of the displacement function and
to account for potential discontinuities with higher-order derivatives along edges when they are periodically
extended onto the entire x– y plane. A new set of supplementary functions is provided in the form of
trigonometric functions, which are essentially unaffected by differential operations and can avoid the
possibility of nullifying a boundary condition. The mathematical and numerical advantages of the current
solution method will become obvious from the following discussions.

2. Vibration of a rectangular plate

Consider a rectangular plate elastically restrained along any edge(s), as shown in Fig. 1. The governing
differential equation for free vibration of a plate is given by

Dr4wðx; yÞ � rho2wðx; yÞ ¼ 0, (1)

where r4 ¼ q4=qx4 þ 2q4=qx2qy2 þ q4=qy4, w(x, y) is the flexural displacement, o the angular frequency, and
D, r, and h are, respectively, the flexural rigidity, the mass density, and the thickness of the plate.
Fig. 1. A rectangular plate elastically restrained along all edges.
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In terms of flexural displacements, the bending and twisting moments, and transverse shearing forces can be
expressed as

Mx ¼ �D
q2w

qx2
þ v

q2w

qy2

� �
, (2)

My ¼ �D
q2w

qy2
þ v

q2w
qx2

� �
, (3)

Mxy ¼ �Dð1� nÞ
q2w

qx qy
, (4)

Qx ¼ �D
q
qx
ðr2wÞ þ

qMxy

qy
¼ �D

q3w
qx3
þ ð2� nÞ

q3w
qx qy2

� �
, (5)

and

Qy ¼ �D
q
qy
ðr2wÞ þ

qMxy

qx
¼ �D

q3w
qy3
þ ð2� nÞ

q3w
qx2 qy

� �
. (6)

The boundary conditions for an elastically restrained rectangular plate are as follows:

kx0w ¼ Qx; Kx0 qw=qx ¼ �Mx; at x ¼ 0, (7, 8)

kxaw ¼ �Qx; Kxa qw=qx ¼Mx; at x ¼ a, (9, 10)

ky0w ¼ Qy; Ky0 qw=qy ¼ �My; at y ¼ 0, (11, 12)

and

kybw ¼ �Qy; Kyb qw=qy ¼My; at y ¼ b, (13, 14)

where kx0 and kxa (ky0 and kyb) are the linear spring constants, and Kx0 and Kxa (Ky0 and Kyb) the rotational
spring constants at x ¼ 0 and x ¼ a (y ¼ 0 and y ¼ b), respectively. Eqs. (7)–(14) represent a set of general
boundary conditions from which, for example, all the classical homogeneous boundary conditions can be
directly obtained by accordingly setting the spring constants to be extremely large or small.

Substitution of Eqs. (2)–(6) into (7)–(14) leads to

kx0wðx; yÞ ¼ �D
q3w
qx3
þ ð2� vÞ

q3w
qx qy2

Þ

� �
; Kx0

qw

qx
¼ D

q2w

qx2
þ v

q2w
qy2

� �
at x ¼ 0, (15, 16)

kxawðx; yÞ ¼ D
q3w

qx3
þ ð2� vÞ

q3w

qx qy2
Þ

� �
; Kxa

qw

qx
¼ �D

q2w

qx2
þ v

q2w
qy2

� �
at x ¼ a, (17, 18)

ky0wðx; yÞ ¼ �D
q3w
qy3
þ ð2� vÞ

q3w
qx2 qy

� �
; Ky0

qw

qy
¼ D

q2w
qy2
þ v

q2w
qx2

� �
at y ¼ 0, (19, 20)

kybwðx; yÞ ¼ D
q3w
qy3
þ ð2� vÞ

q3w

qx2 qy
Þ

� �
and Kyb

qw

qy
¼ �D

q2w
qy2
þ v

q2w
qx2

� �
at y ¼ b. (21, 22)

An exact solution is widely considered unavailable for plates under such a set of general boundary conditions.
As a consequence, the Rayleigh–Ritz method or some other methods have been usually used to find an
approximate solution.

In this study, the displacement function will be sought in the form of series expansions as

wðx; yÞ ¼
X1
m¼0

X1
n¼0

Amn cos lamx cos lbnyþ
X4
l¼1

xl
bðyÞ

X1
m¼0

cl
m cos lamxþ xl

aðxÞ
X1
n¼0

dl
n cos lbny

 !
; (23)
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where lam ¼ mp/a, lbn ¼ np/b, and xl
aðxÞ (or x

l
bðyÞ) represent a set of closed-form sufficiently smooth functions

defined over [0, a] (or [0, b]). The term ‘‘sufficiently smooth’’ implies that third-order derivatives of these
functions exist and are continuous at any point on the plate. Such requirements can be readily satisfied by
simple polynomials [14,24,25]. Theoretically, there are an infinite number of these supplementary functions.
However, one needs to ensure that the selected functions will not nullify any of the boundary conditions. As
mentioned earlier, these functions are introduced specifically to take care of possible discontinuities with first
and third derivatives at each edge. In the subsequent solution phase, however, the expansion coefficients will
have to be directly solved from the governing equations and the boundary conditions. Thus, the selected
supplementary functions should not interfere with this process in any way. To better understand it, let us
consider, for example, the boundary condition, Eq. (16). If the supplementary functions and their second
derivatives (with respect to x) all vanish at x ¼ 0, then this boundary condition will be mathematically nullified
for Kx0 ¼ 0. In other words, the resulting coefficient matrix will become singular for Kx0 ¼ 0. Similar
situations can occur at other edges. With this in mind, the supplementary functions will be here chosen in the
form of trigonometric functions, which are essentially unaffected by differential operations:

x1aðxÞ ¼
9a

4p
sin

px

2a

� �
�

a

12p
sin

3px

2a

� �
; x2aðxÞ ¼ �

9a

4p
cos

px

2a

� �
�

a

12p
cos

3px

2a

� �
, (24, 25)

x3aðxÞ ¼
a3

p3
sin

px

2a

� �
�

a3

3p3
sin

3px

2a

� �
; x4aðxÞ ¼ �

a3

p3
cos

px

2a

� �
�

a3

3p3
cos

3px

2a

� �
. (26, 27)

It is easy to verify that x1
0

a ð0Þ ¼ x2
0

a ðaÞ ¼ x3
000

a ð0Þ ¼ x4
000

a ðaÞ ¼ 1, and all the other first and third derivatives are
identically equal to zero at the edges. These conditions are not necessary, but make it easier to understand the
meanings of the one-dimensional Fourier series expansions: each of them represents either the first or the third
derivative of the displacement function at one of the edges. By doing such, the two-dimensional series will be
‘‘forced’’ to represent a residual displacement function that has, at least, three continuous derivatives in both
x- and y-directions.

It can be proven mathematically that the series expansion given in Eq. (23) is able to expand and uniformly
converge to any function f ðx; yÞ 2 C3 for 8(x, y)AD: ([0, a]�[0, b]). Also, this series can be simply
differentiated, through term-by-term, to obtain uniformly convergent series expansions for up to the fourth-
order derivatives. Mathematically, an exact displacement (or classical) solution is a particular function
wðx; yÞ 2 C3 for 8(x, y)AD that satisfies the governing equation at every field point and the boundary
conditions at every boundary point. Thus, the remaining task for seeking an exact displacement solution will
simply involve finding a set of expansion coefficients to ensure the governing equation and the boundary
conditions to be satisfied by the current series solution exactly on a point-wise basis.

When a plate problem is amenable to the separation of variables, an exact solution is usually expressed as a
series expansion where each term will simultaneously satisfy the homogeneous governing equation and the
boundary conditions. However, in determining the response to an applied load, it should not matter whether
the governing equation or a boundary condition is satisfied individually by each term or globally by the whole
series. Take a simply supported plate as an example. A sine function will be able to exactly satisfy the
characteristic equation and boundary conditions at each edge. Then the exact solution is often understood as a
simple Fourier series, which may also be interpreted as a modal expansion. To calculate the vibrational
response, however, the governing equation will usually include two more terms to account for the damping
effect and the loading condition, and the solution (the expansion coefficients) is obtained by equating the like
terms on both sides (of course, it must be explicitly assumed that the forcing function can also be expanded
into a sine series). In other words, the governing equation is actually satisfied globally by the series, rather than
individually by each term. Since in real calculations a series solution will have to be truncated somewhere
according to a pre-determined error bound, an exact solution really implies that the results can be obtained to
any desired degree of accuracy. This characterization applies equally to the current solution as described below.
The only procedural difference between the classical solution and the proposed one is that the boundary
conditions there are automatically satisfied by each term, and the expansion coefficients are only required to
satisfy the governing equation; in comparison, the expansion coefficients in the current solution will have to
explicitly satisfy both the governing equation and the boundary conditions. This distinction probably will not
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have mathematical significance in regard to the convergence and accuracy of the solution although a pre-
satisfaction of the boundary conditions or governing equation by each of the expansion terms may result in a
reduction of the computing effort.

In what follows, our attention will be directed to solving the unknown expansion coefficients by letting the
assumed solution satisfy both the governing equation and the boundary conditions.

Substituting the displacement expression, Eq. (23), into the boundary condition, Eq. (15), results in

kx0

X1
m¼0

X1
n¼0

Amn cos lbnyþ
X4
l¼1

xl
bðyÞ

X1
m¼0

cl
m þ xl

að0Þ
X1
n¼0

dl
n cos lbny

 ! !

¼ �D ð2� vÞ
X1
n¼0

�l2bnd1
n cos lbnyþ

X1
n¼0

d3
n cos lbny

 !
. (28)

It is seen that in the above equation all the terms, except for the second one, are in the form of cosine series
expansion in y-direction. So it is natural to also expand xl

bðyÞ into a cosine series, i.e., xl
bðyÞ ¼

P1
n¼0b

l
n cos lbny.

By equating the coefficients for the like terms on both sides, the following equations can be derived:

kx0

D

X4
l¼1

bl
n

X1
m¼0

cl
m þ xl

að0Þd
l
n

 !
þ ð2� vÞð�l2bnÞd

1
n þ d3

n ¼ �
kx0

D

X1
m¼0

Amn ðn ¼ 0; 1; 2 . . .1Þ. (29)

Three similar equations can be directly obtained from Eqs. (17)–(19):

X4
l¼1

X1
m¼0

½�l2amb
l
n þ vb̄

l

n�c
l
m þ

X4
l¼1

½x00lað0Þ � vl2bnx
l
að0Þ�d

l
n �

Kx0

D
d1

n ¼
X1
m¼0

ðl2am þ vl2bnÞAmn

ðn ¼ 0; 1; 2 . . .1; x ¼ 0Þ, (30)

kxa

D

X4
l¼1

bl
n

X1
m¼0

ð�1Þmcl
m þ xl

aðaÞd
l
n

 !
þ ð2� vÞl2bnd2

n � d4
n ¼

kxa

D

X1
m¼0

ð�1Þmþ1Amn

ðn ¼ 0; 1; 2 . . .1; x ¼ aÞ, (31)

and

X4
l¼1

X1
m¼0

ð�1Þmðvb̄
l

n � l2amb
l
nÞc

l
m þ

X4
l¼1

½x00laðaÞ � vl2bnx
l
aðaÞ�d

l
n þ

Kxa

D
d2

n ¼
X1
m¼0

ð�1Þmðl2am þ vl2bnÞAmn

ðn ¼ 0; 1; 2 . . .1; x ¼ aÞ, (32)

where xl00

b ðyÞ ¼
P1

n¼0b̄
l

n cos lbny, and the new symbols bl
n and b̄

l

n in the above equations are defined in
Appendix A.

These equations indicate that the unknown coefficients in the two- and one-dimensional series expansions
are not independent. They have to explicitly comply with the constraint conditions, Eqs. (29)–(32). Four more
constraint equations corresponding to the boundary conditions at the remaining two edges can be readily
written out by replacing the variable m, bl

n, b̄
l

n, a, and x with n, al
m, ā

l
m, b, and y, respectively. It now becomes

clear that the satisfaction of these constraint equations by the expansion coefficients is equivalent to an exact

satisfaction of all the boundary conditions (by the displacement function) on a point-wise basis.
The constraint equations can be rewritten in a matrix form as

Hp ¼ Qa, (33)

where p ¼ ½c11; c
1
2 . . . c

1
M ; c

2
1; c

2
2 . . . c

2
M ; . . . ; c

4
1; c

4
2 . . . c

4
M ; d

1
1; d

1
2 . . . d

1
N ; d

2
1; d

2
2; . . . ; d

4
1; d

4
2 . . . d

4
N �

T and a ¼ ½A01;A11

. . .AM1 . . .A02;A12 . . .AM2 . . .A0N ;A1N . . .AMN �
T. The new matrices H and Q are defined in Appendix B. In

Eq. (33), it is assumed that all the series expansions are truncated to m ¼M and n ¼ N for the sake of
numerical implementation.

Eq. (33) represents a set of 4(M+N) equations against a total of 4(M+N)+M�N unknown expansion
coefficients. Thus, additional M�N equations will have to be provided to solve for the expansion coefficients.
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By substituting Eq. (23) into the governing differential equation, one is able to get

X1
m¼0

X1
n¼0

ðl4am þ l4bn þ 2l2aml
2
bnÞAmn cos lamx cos lbny

þ
X4
l¼1

X1
m¼0

ðxl
bðyÞl

4
am � 2l2amx

00l
bðyÞ þ xð4Þlb ðyÞÞc

l
m cos lamx

þ
X4
l¼1

X1
n¼0

ðxl
aðxÞl

4
bn � 2l2bnx

00l
aðxÞ þ xð4Þla ðxÞÞd

l
n cos lbny

�
rho2

D

X1
m¼0

X1
n¼0

Amn cos lamx cos lbnyþ
X4
l¼1

xl
bðyÞ

X1
m¼0

cl
m cos lamxþ xl

aðxÞ
X1
n¼0

dl
n cos lbny

 !" #
¼ 0. (34)

Again, after all the non-cosine functions in the above equation are expanded into Fourier cosine series,
xlð4Þ

b ðyÞ ¼
P1

n¼0
¯̄b

l

n cos lbny the following equations can be obtained by comparing the like terms on both sides:

ðl4am þ l4bn þ 2l2aml
2
bnÞAmn þ

X4
l¼1

ðbl
nl

4
am � 2l2amb̄

l

n þ
¯̄b

l

nÞc
l
m þ

X4
l¼1

ðal
ml

4
bn � 2l2bnā

l
m þ

¯̄al
mÞd

l
n

�
rho2

D
Amn þ

X4
l¼1

ðbl
ncl

m þ al
mdl

nÞ

" #
¼ 0, (35)

where m ¼ 0, 1,y,M�1 and n ¼ 0, 1,y,N�1. It can be further written in a matrix form as

ð ~Kaþ BpÞ �
rho2

D
ð ~Maþ FpÞ ¼ 0. (36)

The coefficient matrices in the above equation are defined in Appendix C.
Obviously, Eqs. (33) and (36) cannot be directly combined together to form a characteristic equation of the

coefficient vectors a and p because the assembled mass matrix will become singular. By following the approach
traditionally used for determining an eigenvalue, one may first solve Eq. (36) for a in terms of p. Substituting
the result into the boundary conditions, Eq. (33), will lead to a set of homogeneous equations. The eigenvalues
can then be obtained as the roots of a nonlinear function that is defined as the determinant of the coefficient
matrix. Such an approach is numerically not preferable because of the well-known difficulties and concerns
associated with solving a highly nonlinear equation. Instead, Eq. (33) will be used here to eliminate the vector
p from Eq. (36), resulting in

K�
rho2

D
M

� �
a ¼ 0, (37)

where K ¼ ð ~Kþ BH�1QÞ and M ¼ ð ~Mþ FH�1QÞ. Eq. (37) represents a standard matrix characteristic
equation from which all the eigenpairs can be easily determined. Once the eigenvector a is determined for a
given eigenvalue, the corresponding vector p can be calculated directly using Eq. (33). Subsequently, the mode
shapes can be constructed by substituting a and p in Eq. (23).

Although this study is focused on free vibrations of an elastically restrained plate, forced vibrations can also
be determined by simply adding a load vector to the right side of Eq. (37). It should be noted that the elements
of the load vector represent the Fourier coefficients of the forcing function when it is expanded into a cosine
series over the plate area.

3. Results and discussion

Several examples involving various boundary conditions will be discussed in this section. First, consider a
plate fully clamped along all four edges. A clamped edge can be viewed as a special case when the stiffness
constants for the (translational and rotational) springs become infinitely large (which is represented by a very
large number, 5.0� 107, in the actual calculations). In Table 1, the first six frequency parameters,
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O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, are given for the clamped plates with different aspect ratios. The calculated frequencies show

an excellent agreement with those previously given in Refs. [1,16]. As mentioned earlier, the series expansion,
Eq. (23), will have to be truncated in numerical calculations. Specifically, the frequency parameters in Table 1
are determined by truncating the series to M ¼ N ¼ 20. To examine the convergence of the solution, Table 2
compares the frequencies (for b/a ¼ 1) calculated by using different number of terms in the series expansion. It
is shown that the results converge at M ¼ N ¼ 17 for the given five-digit precision. The excellent numerical
stability of the solution is also evident. For consistency, the displacement expansion will be simply truncated
to M ¼ N ¼ 20 in all the subsequent calculations.

The next example is about a plate which is clamped at x ¼ 0 and free at all other edges (C–F–F–F). The
free-edge condition is easily created by setting the stiffness constants for both springs equal to zero. This
problem has been extensively studied both numerically and experimentally. The first six frequency parameters
are presented in Table 3. The upper bound for frequency parameter was calculated using the Rayleigh–Ritz
method by taking the first 50 admissible products of beam functions [1]. The finite-element method results
were obtained from a model consisting of 300 linear rectangular elements along each edge. Two more classical
cases (S–S–F–F and C–S–S–F) were also considered, and the corresponding frequency parameters are listed in
Tables 4 and 5, respectively. For a simply supported edge, the stiffness for the transverse spring is infinitely
Table 1

Frequency parameters, O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, for C–C–C–C rectangular plates with different aspect ratios

r ¼ a/b O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
1 2 3 4 5 6

1.0 35.985 73.393 73.393 108.21 131.58 132.20

35.986a 73.395 73.395 108.22 131.58 132.21

35.985b 73.394 73.394 108.22 131.58 132.20

35.985c 73.392 73.392 108.21 131.58 132.20

1.5 60.761 93.832 148.78 149.67 179.56 226.82

2.0 98.309 127.30 179.07 253.31 255.92 284.29

2.5 147.77 173.79 221.35 291.68 384.32 394.23

147.8a 173.8 221.4 291.7 384.4 394.3

3.0 208.76 232.72 276.65 342.81 431.64 542.67

3.5 281.11 303.63 344.68 406.93 491.65 598.94

4.0 364.74 386.23 425.04 483.89 564.60 667.85

aResults from Ref. [16].
bResults from page 66 of Ref. [1].
cResults from FEM with 300� 300 elements.

Table 2

Frequency parameters, O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, for a C–C–C–C square plate with different truncate numbers

M ¼ N O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
1 2 3 4 5 6

13 35.985 73.390 73.390 108.20 131.57 132.20

14 35.985 73.391 73.391 108.21 131.57 132.20

15 35.985 73.392 73.392 108.21 131.58 132.20

16 35.985 73.392 73.392 108.21 131.58 132.20

17 35.985 73.393 73.393 108.21 131.58 132.20

18 35.985 73.393 73.393 108.21 131.58 132.20

19 35.985 73.393 73.393 108.21 131.58 132.20

20 35.985 73.393 73.393 108.21 131.58 132.20
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Table 3

Frequency parameters, O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, for C–F–F–F rectangular plate with different aspect ratios

r ¼ a/b O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
1 2 3 4 5 6

1.0 3.470 8.504 21.279 27.201 30.948 54.185

3.430a 20.874 26.501 51.502

3.482b 21.367 27.278 54.301

3.471c 8.506 21.283 27.199 30.953 54.179

1.5 3.453 11.654 21.463 39.319 53.544 61.606

2.0 3.439 14.800 21.430 48.171 60.143 92.507

2.5 3.427 17.96 21.392 57.209 60.115 105.92

3.428c 17.962 21.397 57.216 60.130 105.93

3.0 3.418 21.135 21.358 60.010 66.365 118.02

3.5 3.411 21.328 24.320 59.905 75.611 117.86

4.0 3.405 21.302 27.513 59.810 84.929 117.67

aResults from page 80 of Ref. [1] for lower bounds.
bResults from page 80 of Ref. [1] for upper bounds.
cResults from FEM with 300� 300 elements.

Table 4

Frequency parameters, O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, for S–S–F–F rectangular plate with different aspect ratios

r ¼ a/b O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
1 2 3 4 5 6

1.0 3.370 17.321 19.293 38.203 51.032 53.497

3.369a 17.41 19.37 38.30 51.35 53.74

3.367b 17.316 19.293 38.210 51.034 53.484

1.5 5.023 21.458 37.527 55.220 60.726 99.107

2.0 6.644 25.370 58.739 65.183 89.084 113.17

2.5 8.244 29.559 64.457 98.681 117.76 125.62

8.251a 29.65 64.77 99.24 118.3 126.1

8.247b 29.564 64.468 98.679 117.78 125.61

3.0 9.850 33.903 70.245 123.48 141.64 167.65

3.5 11.442 38.336 76.443 130.80 189.99 204.62

4.0 13.037 42.835 82.962 138.39 211.48 248.87

aResults from Ref. [16].
bResults from FEM with 300� 300 elements.
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large and the stiffness for the rotational spring is set to zero. In both cases, the current results match well
with the finite-element method data, and show a noticeable improvement over the results previously given in
Ref. [16], which were obtained using the Rayleigh–Ritz method based on the products of beam functions.

The above examples are presented as special cases of elastically restrained plates. It is shown that the
frequency parameters for classical homogeneous boundary conditions can be accurately determined by
modifying the stiffnesses of the restraining springs accordingly. It should be emphasized that unlike most
existing techniques, the current method offers a unified solution for a variety of boundary conditions,
including all the classical cases, and the modification of boundary conditions from one case to another is as
simple as changing the material properties or plate dimensions.

Let us now consider a few more complicated problems in which plates are elastically restrained at an edge.
The first one involves a simply supported square plate with a uniform elastic restraint against rotation along
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Table 5

Frequency parameters, O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, for C–S–S–F rectangular plate with different aspect ratios

r ¼ a/b O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
1 2 3 4 5 6

1.0 16.785 31.115 51.392 64.016 67.549 101.21

16.87a 31.14 51.64 64.03 67.64 101.2

16.790b 31.110 51.393 64.017 67.534 101.10

1.5 18.463 50.409 53.453 88.682 107.65 126.05

2.0 20.577 56.265 77.316 110.69 117.24 175.77

2.5 22.997 59.705 111.90 114.54 153.06 188.54

23.07a 59.97 111.9 115.1 153.1 189.6

23.003b 59.723 111.90 114.58 153.06 188.60

3.0 25.628 63.672 119.11 154.20 193.38 196.24

3.5 28.399 68.063 124.31 199.00 204.21 246.85

4.0 31.274 72.795 130.07 205.32 261.95 299.44

aResults from Ref. [16].
bResults from FEM with 300� 300 elements.

Table 6

Frequency parameters, O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, for S–S–S–S square plate with uniform rotational restraint along edges

Ka/D O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
1 2 3 4 5 6

1 21.500 51.187 51.187 80.816 100.58 100.59

21.496a 51.184 51.184 80.818 100.58 100.58

10 28.501 60.215 60.215 90.808 111.19 111.41

28.50b 60.22 60.22 90.81 111.2 111.4

28.489a 60.196 60.196 90.790 111.16 111.39

100 34.671 70.780 70.780 104.45 127.02 127.61

34.67b 70.78 70.78 104.5 127.0 127.6

34.668a 70.771 70.771 104.44 127.01 127.59

1000 35.842 73.103 73.103 107.79 131.06 131.68

35.842a 73.100 73.100 107.78 131.06 131.68

aResults from FEM with 300� 300 elements.
bResults from Ref. [16].
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each edge. The calculated frequency parameters are given in Table 6 together with those previously obtained
using different models. These three sets of results match very well with each other. The second example
concerns a cantilever square plate with the same elastic restraints added to x ¼ a and y ¼ b. While the stiffness
for the transverse spring is fixed to ka3/D ¼ 10, the rotational restraint will be considered at several different
stiffness levels: Ka/D ¼ 1, 10, 100, and 1000. The corresponding frequency parameters are shown in Table 7. It
is seen that the first two frequencies are not very sensitive to the changes of rotational restraints, which is kind
of anticipated from the similar trend for a cantilevered beam.

Last, consider a square plate elastically supported along all of its edges. The stiffnesses for the transverse
and rotational restraints are chosen as ka3/D ¼ 100 and Ka/D ¼ 1000, respectively. The frequency parameters
are shown in Table 8 for plates with different aspect ratios from 1 to 4. Again, the current calculations
compare well with the finite-element method results. Thus far, our attention has been focused on frequency
parameters for different boundary conditions and aspect ratios. As a matter of fact, the eigenpairs
(eigenfrequencies and eigenvectors) are simultaneously obtained from the characteristic equation, Eq. (37).
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Table 7

Frequency parameters,O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, for C–F–F–F square plate with identical elastic restraints at x ¼ a and y ¼ b, ka3/D ¼ 10 and ka/

D ¼ 1, 10, 100, 1000

Ka/D O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
1 2 3 4 5 6

1 7.534 11.708 24.300 29.445 33.029 55.691

7.518a 11.684 24.288 29.424 33.015 55.680

10 7.8104 12.317 28.408 32.72 35.924 58.791

7.797b 12.299 28.397 32.697 35.909 58.772

100 7.899 12.597 30.218 34.537 37.574 61.077

7.886b 12.581 30.215 34.525 37.569 61.069

1000 7.910 12.635 30.463 34.801 37.825 61.463

7.897b 12.620 30.461 34.792 37.820 61.456

aResults from Ref. [16].
bResults from FEM with 300� 300 elements.

Table 8

Frequency parameters, O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, for square plate with ka3/D ¼ 100 and Ka/D ¼ 1000, respectively, at x ¼ 0, a and y ¼ 0, b

r ¼ a/b O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
1 2 3 4 5 6

1.0 17.509 25.292 25.292 33.893 46.285 46.856

17.474a 25.228 25.228 33.795 46.264 46.779

1.5 20.718 27.455 35.433 44.712 47.694 69.282

20.664a 27.362 35.357 44.595 47.623 69.194

2.0 23.217 29.346 48.772 50.239 60.024 86.096

23.151a 29.230 48.683 50.165 59.908 86.001

2.5 25.374 31.069 49.812 70.381 80.411 93.651

25.298a 30.932 49.705 70.308 80.298 93.592

3.0 27.322 32.675 50.822 94.186 95.857 105.98

27.238a 32.520 50.698 94.116 95.788 105.87

3.5 29.123 34.192 51.807 94.717 126.54 136.68

29.038a 34.040 51.682 94.646 126.47 136.58

4.0 30.809 35.639 52.770 95.243 161.35 162.31

30.710a 35.455 52.612 95.153 161.28 162.24

aResults from FEM with 300� 300 elements.
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For a given eigenfrequency, the corresponding eigenvector actually contains the expansion coefficients Amn. In
order to determine the mode shape, the expansion coefficients for one-dimensional Fourier series expansions
also need to be calculated using Eq. (33). Once all the expansion coefficients are known, the mode shapes can
be simply obtained from Eq. (23) in an analytical form. For example, plotted in Fig. 2 are the mode shapes
that correspond to the six frequencies given in the first row of Table 8. Because the stiffnesses of the restraining
springs are sufficiently large, the characteristics of the rigid body motions are effectively eliminated. Although
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Fig. 2. The mode shapes for square plate with ka3/D ¼ 100, Ka/D ¼ 1000 at all four edges. The (a) first, (b) second, (c) third, (d) fourth,

(e) fifth, and (f) sixth mode shapes.
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one can still see the traces of the modes for a completely clamped plate, the edges and corners now become
quite alive in the current case.

4. Conclusions

A general analytical method is proposed for the vibration analysis of a rectangular plate with elastically
restrained edges. The displacement solution is here expressed as a combination of several series expansions,
and the unknown expansion coefficients are determined from the conditions that both the governing equation
and the boundary conditions are satisfied exactly on a point-wise basis. Since each of the series expansions has
to be truncated to a finite number of terms in actual numerical calculations, the term ‘‘satisfied exactly’’ should
be understood as satisfied to any specified accuracy. The current method is universally applicable to a variety of
boundary conditions, including all the classical cases. The modification of boundary conditions from one case
to another is as simple as modifying the material properties or plate dimensions, and does not involve any
change to the solution algorithms or procedures in contrast to most existing methods. Several numerical
examples are presented to demonstrate the accuracy and reliability of the proposed solution method.
Although this study is focused on plates with uniform elastic supports along an edge, the current method can
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be readily extended to other more complicated boundary conditions such as non-uniform elastic restraints,
point and partial supports, and their combinations.
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Appendix A. Definitions of al
m, ā

l
m, ¯̄al

m, b
l
n, b̄

l

n, and
¯̄b

l

n used in Eqs. (29)–(31)
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xl
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1 sin
px
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2 cos
px
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2 sin
3px
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(A.1)

and

xl
bðyÞ ¼ tl

1 sin
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2 cos
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þ tl

2 sin
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þ tl

4 cos
3py

2a

� �
. (A.2)

Then we define

al
m ¼

X4
p¼1

sl
pt

p
am; āl

m ¼
X4
p¼1

sl
pð�l

2
apÞt

p
am; ¯̄al

m ¼
X4
p¼1

sl
pðl

4
apÞt

p
am, (A.32A.5)

bl
n ¼

X4
q¼1

tl
qk

q
bn; b̄

l

n ¼
X4
q¼1

tl
qð�l

2
bqÞk

q
bn; and ¯̄b

l

n ¼
X4
q¼1

tl
qðl

4
bqÞk

q
bn; (A.62A.8)

where tp
am denote the expansion coefficients of the following functions:

cos
p
2a

x�
p
2

� �
¼
X1
m¼0

t1am cos lamx; cos
p
2a

x
� �

¼
X1
m¼0

t2am cos lamx, (A.9,A.10)

cos
3p
2a

x�
p
2

� �
¼
X1
m¼0

t3am cos lamx; and cos
3p
2a

x

� �
¼
X1
m¼0

t4am cos lamx, (A.11,A.12)

and are calculated from

t1am ¼

m ¼ 0
2

p

ma0
4

ð1� 4m2Þp

8>><
>>: ; t2am ¼

m ¼ 0
2

p

ma0
4ð�1Þm

ð1� 4m2Þp

8>><
>>: , (A.13,A.14)

t3am ¼

m ¼ 0
2

3p

ma0
12

ð9� 4m2Þp

8>><
>>: ; and t4am ¼

m ¼ 0 �
2

3p

ma0
12ð�1Þmþ1

ð9� 4m2Þp

8>>><
>>>:

. (A.15,A.16)

The y counterparts, kq
bn, can be directly obtained from tl

am by replacing m with n in Eqs. (A.13)–(A.16).
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Appendix B. Definitions of H and Q matrixes in Eq. (33)

H ¼

e11 e21 e31 e41 f 1
1 f 2

1 f 3
1 f 4

1

e12 e22 e32 e42 f 1
2 f 2

2 f 3
2 f 4

2

e13 e23 e33 e43 f 1
3 f 2

3 f 3
3 f 4

3

e14 e24 e34 e44 f 1
4 f 2

4 f 3
4 f 4

4

e15 e25 e35 e45 f 1
5 f 2

5 f 3
5 f 4

5

e16 e26 e36 e46 f 1
6 f 2

6 f 3
6 f 4

6

e17 e27 e37 e47 f 1
7 f 2

7 f 3
7 f 4

7

e18 e28 e38 e48 f 1
8 f 2

8 f 3
8 f 4

8

2
6666666666666664

3
7777777777777775

, (B.1)

where
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D
bl
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D
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að0Þ � dl1ð2� vÞl2bn þ dl3, (B.2, B.3)
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2
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Q ¼ Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

h iT
, (B.18)

where
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D
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Appendix C. Definitions of matrices in Eq. (36)

~K and ~M are diagonal matrices. Their elements are defined as

~KnMþm;nMþm ¼ l4am þ l4bn þ 2l2aml
2
bn and ~MnMþm;nMþm ¼ 1. (C.1,C.2)
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h i
, (C.3)
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where
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ap;m ¼ bl

n and F l
bp;n ¼ al

m ðp ¼ nM þmÞ. (C.7,C.8)
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